¹³C NMR EVIDENCE FOR THE CENTRAL MONO-CIS STEREOCHEMISTRY OF A NATURALLY OCCURRING VIOLAXANTHIN ISOMER

Lajos Radics, Péter Molnar* and József Szabolcs*

NMR Laboratory, Central Research Institute for Chemistry, H-1525 Budapest, Hungary, *University Medical School of Pécs, H-7643 Pécs, Hungary

(Received 10 May 1982)

Key Word Index-Viola tricolor, Violaceae, 15-cis-(=central-mono-cis)-violaxanthin

Abstract—The geometrical configuration of central-mono-cis-violaxanthin has been confirmed by ¹³C NMR analysis

INTRODUCTION

We have recently described the isolation of a new monocis isomer of (3S,5R,6S,3'S,5'R,6'S)-violaxanthin (1) from the blossoms of *Viola tricolor* L [1] On the basis of its electron spectrum, the isomer was tentatively assigned C-15-(central)-mono-cis geometry (2) 13 C NMR spectral comparison of 2 with all-trans 1 has now provided conclusive evidence for this structure

RESULTS AND DISCUSSION

The ¹³C NMR data of compounds 1 and 2 are summarized in Table 1 together with the respective trans-cis differential shieldings. The assignment of resonances to individual carbon atoms was based on our earlier studies on 1 and on related isomeric mono-cis carotenoids [2, 3, Szabolcs, J et al, unpublished results]

The data shows that the overall symmetry of the alltrans molecule (1) (1 e 20 resonances for 40 carbon atoms) remained unaffected by the isomerism in 2 and the resonances most influenced by changes in the stereochemistry are due to C-14 (C-14') and C-15 (C-15') According to well-established chemical shift rules for carotenoid systems [4], these observations are in complete agreement with the proposed C-15-mono-cis geometry of 2

EXPERIMENTAL

Pigments 1 and 2 were isolated as previously described [1] The ¹³C NMR spectra were recorded in a disk-augmented Varian XL-100/15 FT

Table 1 ¹³C NMR data of pigments 1 and 2 (25 16 MHz, pyridine-d₅, TMS as int standard)

Carbon No	1	2	Δ*
1(1')	35 49	35 51	+002
2(2')	47 93	47 95	+0.02
3(3')	63 19	63 24	+005
4(4')	41 86	41 85	-0.01
5(5')	67 19	67 24	+005
6(6')	70 55	70 59	+004
7(7')	125 51	125 85	+034
8(8')	137 52	137 47	-0.05
9(9')	134 86	135 16	+0.30
10(10')	132 70	132 60	-010
11(11')	125 45	125 75	+0.30
12(12')	138 62	138 78	+016
13(13')	136 85	137 65	+080
14(14')	133 56	126 49	-707
15(15')	130 94	128 11	-283
16(16')	25 45	25 45	0.00
17(17')	29 76	29 77	+001
18(18')	20 39	20 39	0.00
19(19')	13 07	13 10	+003
20(20')	12 86	12 58	-0.28

^{*} $\Delta = \delta \cos - \delta \text{ all-trans}$

REFERENCES

- 1 Molnár, P and Szabolcs, J (1980) Phytochemistry 19, 623
- 2 Moss, G. P., Szabolcs, J., Tóth, Gy and Weeden, B. C. L. (1975) Acta Chim. Acad. Sci. Hung. 87, 301
- 3 Baranyai, M, Molnár, P, Szabolcs, J, Radics, L and Kajtár-Peredy, M (1981) Tetrahedron 37, 203
- 4 Moss, G P and Weedon, B C L (1976) Chemistry and Biochemistry of Plant Pigments (Goodwin T W, ed) Vol 1, p 213 Academic Press, London